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ABSTRACT 

This paper addresses the problem of predicting the structure borne and airborne sound transmission 

in aircraft using Statistical Energy Analysis (SEA). Often analytical formulations are used to approx-

imate the SEA parameters.  In the present prediction method, a finite element (FE)-informed SEA 

approach is employed. To compute the coupling coefficient, the structure is represented with a repe-

tition of unit cell and an FE model of the unit cell is assigned to evaluate the direct field dynamic 

stiffness matrix of the SEA subsystems at the connections. An efficient strategy is employed to deter-

mine the equivalent material properties of the FE model. Thus, two-dimensional unit cells of different 

constructions such as composite, sandwich, visco-elastic laminate and ribbed section sections can be 

used. To evaluate the equivalent properties of multi-layer structures, each layer is assumed as thick 

laminate with orthotropic orientation. Moreover, rotational inertia and transversal shear, membrane 

and bending deformations are accounted for. First-order shear deformation theory is employed. The 

developed approach handles symmetrical layouts of unlimited numbers of transversal compressible 

or incompressible layers. The accuracy of this modeling approach is confirmed through comparison 

to alternate validated theoretical approaches. Representative examples of academic and industrial 

structural response and interior noise predictions for typical load cases are shown and the use of 

SEA models as a tool for guiding construction of complex structures to meet acoustic performance 

targets and optimize designs are presented.  Conclusions about the application and advantages of 

this approach are presented. 
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1.    INTRODUCTION 

Statistical Energy Analysis (SEA) is a technique in which statistical descriptions of a system are 

employed in order to simplify the analysis of complicated structural-acoustic problems [1]. Detailed 

analysis of wave motions of complex structural systems such as multi-layer laminate, sandwich or 

stiffened plates is often difficult to achieve because of the complexity of the structural configuration. 

Being able to properly characterize complex stiffened or unstiffened multi-layer lightweight struc-

tures and derive the modal density and coupling coefficient is essential for SEA analysis. Often, these 

parameters are determined analytically which might be restricted to limited configurations such as 

straight-line connection or planar area connection. Recently a more general approach to compute the 

SEA parameters by means of FE-informed SEA has been developed where an accurate power flow 

model is defined to model complex configurations [4]. To compute the coupling coefficient, the au-

thors represented the structure with a repetition of unit cell. A three-dimensional (3D) FE model of 

the unit cell is assigned to evaluate the direct field dynamic stiffness matrix of the SEA subsystems 

at the connections. However, the usage of 3D unit cell might have some consequences such as the 

high number of nodes that might lead to an increase of the computational time. Therefore, a homo-

geneous unit cell with fewer nodes is developed in the present paper. Indeed, many researchers have 

studied the homogenization of complex structures such as multi-layer panel or stiffened panels with 

thick composite skin. For instance, Zhou and Crocker [6] analyzed the sound transmission of sand-

wich panels where the classical sandwich formulation is used to predict the modal density and the 

coupling loss factor is measured. Other researchers modelled the laminate composite as a two-dimen-

sional problem wherein the displacement field in each lamina is based on Kirchhoff’s hypothesis [7-

9]. Moreover, most of the existing models neglect the shear and the in-plane contributions as well as 

the rotational inertia that strongly influence the high-frequency behavior of these structures.  More 

accurate results are provided by a first-order shear deformation theory [10-12] or other higher-order 

shear deformation theories [13]. The first-order shear deformation theory based on Reissner–Mindlin-

type assumptions takes the transverse shear deformation into account. However, it requires shear 

correction factors to compensate for errors resulting from the approximation of the shear-strain dis-

tribution. For instance, the work presented in references [14-15] used Reissner–Mindlin-type assump-

tions in a Transfer Matrix Method (TMM) context.  In reference [16], the authors developed a semi-

analytical model to analyze ribbed panels with evenly and unevenly stiffened composite laminate flat 

structure and the modal density of periodically stiffened beam and plate structures in terms of phase 

constants, which were associated with propagating wave motion [17].  The distinct behaviour of the 

stiffened panel in terms of wavenumbers has been described in reference [18]. Recently, a wave and 

modal based approach are developed to model both sandwich and stiffened or unstiffened panels with 

thick composite skins in an SEA context [19]. The effect of shear deformation and the in-plane / 

bending coupling effects are employed to improve the vibro-acoustic response prediction of multi-

layer structures. The work presented in [19] is extended in the present paper. 

 

2.   THEORY 

In what follows a general periodic FE method for modeling wave propagation in SEA subsystems is 

employed. This approach will be used in a generalized SEA wave-based approach framework.  

2.1.    Structural response 

Consider a two-dimensional structure made of periodic connected elements (or unit cell). The dy-

namic equilibrium under harmonic motion of the unit cell reads: 

 [𝐊(𝜔) − 𝜔2𝐌(ω)]𝐪(ω)  =  𝐟(ω) (1) 

where K and M are the stiffness and mass matrices, respectively, assumed to be frequency depend-

ent, q is the nodal Degrees of Freedom (DOFs),  𝐟 is the sum of the internal and external forces and 

𝜔 is the circular frequency. The DOFs of the cell are partitioned as [21]: 

 𝐪 = {𝐪𝐈, 𝐪𝐁, 𝐪𝐓, 𝐪𝐋, 𝐪𝐑, 𝐪𝐋𝐁, 𝐪𝐑𝐁, 𝐪𝐋𝐓, 𝐪𝐑𝐓, 𝐪𝐈}
𝐓 (2) 



where the subscripts refer to internal (I), edges (B, T, L, R) and corner (LB, RB, LT, RT) sets. More-

over, the location of the nodes on opposite edges (e.g., L and R sets) is assumed identical. An equiv-

alent partitioning is used for the vector. A Bloch wave solution is imposed by assuming pseudo-

periodic boundary conditions on 𝐪 which lead to: 

 [𝐓𝑙  (𝜇)[𝐊(𝜔) − 𝜔2𝐌(ω)]𝐓r (𝜇)] 𝐪0   =  𝐓𝑙  (μ)𝐟ext (3) 

Where 𝜇 is the non-dimensional wavenumber which can be interpreted in the Cartesian coordinate 

(𝜇𝑥, 𝜇𝑦) and 𝐪0 = {𝐪𝐈, 𝐪𝐁, 𝐪𝐓, 𝐪𝐋, 𝐪𝐋𝐁}𝐓 

The wave FE dispersion equation for a given (𝜇, 𝜔) can be obtained by setting (f = 0) 

 [𝐀(ω)]𝐪𝟎   =  0 (4) 

Where A is the first term in Eq (3). The solution of the non-linear eigenproblem Eq (4) can be used 

to construct the dynamic stiffness matrices of each wavefield coupled to each junction. Hence, the 

components of the SEA power balance equation can be computed [4]. 

 

𝜋𝜔[(𝓜𝒋 + 𝓜𝑑𝑗 + ∑ ℎ𝑘,𝑗)𝑪𝑗𝑘≠𝑗 − ∑ ℎ𝑗,𝑘𝑪𝑘𝑘≠𝑗 ] = 𝚷𝑖𝑛𝑗
𝑒𝑥𝑠𝑡, 

 
(5) 

where 𝓜𝒅𝒋 are the damping coefficients, ℎ𝑗𝑘 are the coupling terms and C is the diffuse field am-

plitude. 

2.2.   Homogenized unit cell 

A simple homogeneous 2D unit cell can be used to model complex industrial structures such as com-

posite, sandwich or ribbed panels. The properties of the homogenized unit cell can be determined 

using the wave dispersion of the structure. This strategy has the advantage of reducing the number of 

nodes and consequently the number of DOFs required to model complex structures.  In the following 

section a description of the generalized dispersion equation corresponding to different type of struc-

tures is presented. 

2.2.1 Stiffened structure 

The generalized differential equations governing the vibration of the infinite stiffened plate are given 

by [22]: 
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where Nx, Ny, Nxy, Mx, My and Mxy are the panel in-plane forces and bending moments, Qx, Qy, are the 

panel shearing forces and ms, Iz and Iz2 are the total mass per unit area and the rotational inertia terms. 

Assuming a solution in the form of space-harmonics series truncated to a finite but sufficient number 

of terms p and q to ensure convergence at the highest frequency of interest: 
  



{𝑒} = ෍൛𝑒𝑝𝑞ൟ exp൫−𝑗𝑘𝑥,𝑝𝑥 − 𝑗𝑘𝑦,𝑞𝑦൯

𝑝𝑞

 
(11) 

Where  𝑗2 = −1 and ൛𝑒𝑝𝑞ൟ is the displacement vector.  𝑘𝑥,𝑝 = 𝑘𝑝𝑞 cos൫𝛾𝑝𝑞൯ and 𝑘𝑦,𝑞 =

𝑘𝑝𝑞 sin൫𝛾𝑝𝑞൯, with 𝑘𝑝𝑞 , 𝛾𝑝𝑞 are the wavenumber module and heading angle for a given 𝑝, 𝑞 ∈ ℕ. Eq 

(6-10) can be written in a compact form:  
 

[𝐀𝑝𝑞]ൻ𝑒𝑝𝑞ൿ = 𝐏𝑒𝑥𝑠𝑡ۧۦ − ൻ𝐐1,0𝑞ൿ − ൻ𝐐2,𝑝0ൿ 
 

 

(12) 

Where 𝐀𝑝𝑞 is the skin stiffness matrix and 𝐏𝑒𝑥𝑠𝑡 is the external load vector. 𝐐1,0𝑞 , 𝐐2,𝑝0 are the inter-

nal loads applied by the connection on the skin in the x and y directions. Using the periodicity relation 

and Poisson’s sum formula [22], a set of decoupled equation is found for each space-harmonic 𝑝, 𝑞: 
 

ቂ𝑘𝑝𝑞
2 ൣ𝐀𝟐൫𝛾pq൯൧ + 𝑗𝑘𝑝𝑞ൣ𝐀𝟏൫𝛾pq൯൧ + ൣ𝐀𝟎൫𝛾pq൯൧ቃ ൻ𝑒𝑝𝑞ൿ = 0 

 

 
(13) 

Where 𝐀𝒊 ; 𝑖 = {1: 3} are 5x5 matrices written in terms of a homogenized plate stiffness. Indeed, the 

skin stiffness is corrected regarding distinct behaviour in terms of wavenumbers of the stiffened 

panel. The plate behavior shifts from global behaviour, when the half wavelength is bigger than (Sx, 

Sy), to periodic behaviour over areas delimited by (Sx, Ly) or the area delimited by (Lx, Sy).  Finally, 

when the half-wavelength goes below the rib and frame spacing Sx and Sy, the dynamic behaviour is 

determined by the behaviour of a uniform subpanel delimited by the ribs and frames (local behaviour). 

Those four conditions represent the four models required when fully describing the dynamic behav-

iour of a stiffened plate over a large frequency band [18-19].  

2.2.2 Laminate structure dispersion relation 

For composite structures, the dynamic equilibrium relations of the unstiffened in-vacuum panel can 

be obtained by removing the terms of forces and moments in Eq (6-10). Using the constitutive relation 

between the forces and the displacements [19]. The equations of motion can be obtained by assuming 

a general solution of the following form: 

 {𝑒} = ൛𝑈, 𝑉, 𝑊, 𝜑𝑥, 𝜑𝑦ൟ
𝑇

exp൫𝑗𝑘𝑥 + 𝑗𝑘𝑦 + 𝑗𝜔𝑡൯ (14) 

where 𝑘𝑥 = 𝑘𝑝 cos(𝜃) and 𝑘𝑦 = 𝑘𝑝 sin(𝜃) are the components of the structural wave number, 𝑘𝑝 is 

defined as a function of the heading angle .This leads to the following compact matrix equation: 

 ൛𝑘𝑝
2[𝐀2] + 𝑗𝑘𝑝[𝐀1] + [𝐀0]ൟ{𝑒} = 0 (15) 

Where 𝐀𝒊 {𝑖 = 0: 3} are 5x5 matrices [19]. The eigenproblem shown in Eq (15) has 10 conjugate eigen-

values corresponding to propagating and evanescent waves. 

2.2.3 Sandwich structure 

For the sandwich model, a Mindlin-type assumption [10] is used to describe the displacement field 

of the core. The skins are assumed to be thinner than the core and display bending behavior. Their 

displacement field is built using the Love-Kirchhoff’s assumptions but is corrected to account for the 

rotational influence of the transversal shearing in the core [14,15,19]. This leads to the following 

dispersion equation:  

 ൛𝑘𝑝
4[𝐀4] + 𝑗𝑘𝑝

3[𝐀3] + 𝑘𝑝
2[𝐀2] + 𝑗𝑘𝑝[𝐀1] + [𝐀0]ൟ{𝑒} =0 (16) 

Where 𝐀𝒊 {𝑖 = 0: 3} are 3x3 matrices. Equation (16) represent a complex polynomial eigenproblem 

of fourth order which has 12 conjugate eigenvalues corresponding to propagating and evanescent 

waves. 

2.   NUMERICAL RESULTS 

Various industrial and academic examples are given hereafter and validated by comparison with the 

VA One commercial software [23]. In the following examples, the wave approach-based predictions 



using the different homogenized models are examined by comparing various vibro-acoustic indica-

tors with finite element simulations. Both structural and acoustical behavior under structure-borne 

excitation is investigated. The capabilities and accuracy of the vibration and sound transmission pre-

diction of various types of structures are checked by analyzing their effects.  

2.1 Case 1: Non-coplanar coupled subsystems with isolators 

In a first example, an SEA system of two coupled rectangular uniform plates is considered (Figure 1-

a). The thickness of the two plate-A and plate-B are 1𝑚𝑚 and 1.5𝑚𝑚, respectively. The two plates 

are made of aluminium material and the angle between them is 135 degrees. The area of each plate 

is 1m2. A line spring isolator is applied between the line connection and plate-A. The spring stiffness 

with respect to the coordinate system (x-axis is along the line junction) is 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 10 MPa  

and 𝑘𝑥𝑥  =  0.1 MPa/rad. The plate-A is excited by a point force. The mean quadratic velocity for 

the two plates is shown in Figures 1-b-c. The SEA predicted mean quadratic velocity of plate-A and 

plate-B is found in excellent agreement with the FE reference model. The latter is obtained by aver-

aging 100 velocity sensors randomly located across each plate and solving for 25 different realizations 

of the nominal system. It is observed that the present approach captures well the physics. Clearly the 

isolator affects the energy flow through the junction especially at 800Hz where most of the energy is 

stored in the source plate which lead to a significant deep in the receiver plate structural response. 
 

 

a) Non-coplanar coupled 

plates.  
b) Predicted velocity of plate A. 

 
c) Predicted velocity of plate B. 

Figure [1]: Comparison of predicted mean quadratic velocity versus finite element prediction for Case 1. 

2.2 Case 2: Connected doubly curved shell 

In the following example, two coupled composite doubly curved shells are considered (Figure 2-a). 

The curvature radius of the two plates-A and B are 𝑟1 = 2𝑚 and 𝑟2 = 7𝑚, respectively. The two  

 
 

 
a) coupled doubly curved 

panels. 
c) Predicted velocity of plate A. c) Predicted velocity of plate B. 

Figure [2]: Comparison of predicted mean quadratic velocity versus finite element prediction in Case 2. 

 

plates are made of 17 layers of orthotropic material. The material orientations of the layup are [45,0,-

45,90,90,-45,0,45,0,45,0,-45,90,90,-45,0,45] (in degrees). Again, the predicted mean square velocity 

is in excellent agreement with the FE solutions shown in Figures 2-c-d. Note that the SEA model 

assumes large panel subsystems, so below the first mode, the results differ from the FE solution.  

 

Plate A 

Plate B 

x 
y 

z 

Plate A 

Plate B 



2.3 Case 3: Acoustic transmission through curved shell 

Next, a curved panel coupled to an acoustic cavity Figure 3-a is investigated. The panel is made of 

aluminum with thickness of 1𝑚𝑚. The panel’s curvature radius is 2m.  The panel is excited by a 

harmonic point force. The predicted result using the presented approach is compared to FE solution 

predicted using VA One software [23]. As shown in Figures 3-b-c, the present prediction approach, 

captures well the physics and corroborate well with the reference FE solution. The pick observed 

around 700 Hz in both the structural and acoustic response corresponding to the structure’s ring fre-

quency. In this example, simply supported boundary conditions on the edge of the plate is considered.  

It is worth noting that the boundary conductions have an important effect below the coincidence due 

to the radiation from edges and corners which may explain the small difference in terms of the power 

input to the acoustic cavity.  

 

 
a) coupled curved shell and 

acoustic cavity. 
b) Predcited power input to the 

structure. 
c) Predcited power input to the 

acoustic cavity. 
Figure [3]: Comparison of predicted mean quadratic velocity and acoustic response versus finite element pre-

diction in Case 3. 

2.4 Case 4: Acoustic transmission through sandwich with light core 

In the following example, the accuracy of the presented approach is examined by comparison with 

the FE solution using VA One [23]. A sandwich with honeycomb core and composite skins coupled 

to an acoustic cavity is considered (Figure 4-a). The core density is 𝜌 = 160 (𝑘𝑔/𝑚3). The Young 

and shear modulus along x-y- axis are 𝐸𝑥 = 0.207GPa, 𝐸𝑦 = 0.322GPa, 𝐺𝑥𝑦 = 0.09GPa.  The Pois-

son’s ratio 𝑣 = 0.15 and thickness ℎ𝑠 = 6.35𝑚𝑚.  

 

 
a) Sandwich plates coupled 

to acoustic cavity. b) Predicted velocity of the plate. c) Predicted power input to the cavity. 

Figure [4]: Comparison of predicted mean quadratic velocity and input power versus finite element predic-

tion for Case 4. 

 

The skins are made of two layers of Graphite/Epoxy with material orientation [45/-45] degrees. Fig-

ures 4-b-c, show a comparison between the structure mean square velocity and the power input to the 

cavity, respectively with FE solution. The predicted result is again in very good agreement with the 

FE solution. 

Cavity 

Plate  
x  

y  

z  

Power input (acoustic cavity) 



2.5 Case 5: Structural transmission (aircraft fuselage) 

Next, a representative model of an aircraft fuselage made of a curved bidirectionally stiffened panel 

coupled to a uniform shell Figure 5-a is investigated. The stiffened panel skin is reinforced by or-

thogonal C and Z shaped ribs as seen in Figure 5-b. The spacing between the C and Z shaped ribs and 

frame are 0.5m and 0.35m, respectively. The height and thickness of the C-shaped rib are 9.5cm and 

2mm, respectively, while the height and thickness of the Z-shaped rib are 2.5cm and 2mm. The two 

panels are made of aluminum material and the thickness of the two skins is 1mm. The panels’ curva-

ture radii are 2m. The uniform panel is excited by a harmonic point force. The predicted power input 

to the plate-A and mean square velocity of the tow plates are is compared to FE solution. Again, 

excellent agreement between the present approach and the FE reference is obtained (Figures 5-c-d-

e). 

 

 
a) coupled panels. 

 
b) Ribs and frame. 

 

 
c) Precited power input to plate A. 

 
d) Predicted velocity of  

plate A. 

 
e) Predicted velocity of  

plate B. 

Figure [5]: Comparison of predicted mean quadratic velocity and input power versus finite element predic-

tion in Case 5. 

3 CONCLUSIONS 

In this paper several academic and industrial configurations are investigated using an FE-informed 

SEA approach. The problem of predicting the structure-borne and airborne sound transmission is 

addressed using Statistical Energy Analysis (SEA). To compute the coupling coefficient, the structure 

is represented with a repetition of unit cell and an FE model of the unit cell is assigned to evaluate 

the direct field dynamic stiffness matrix of the SEA subsystems at the connections. A homogenized 

FE model is used to handle complex structures such as composite and stiffened plates. Two-dimen-

sional unit cells of different constructions were enough to accurately evaluate the structural and 

acoustical response of these structures. To evaluate the equivalent properties of multi-layer structures, 

each layer is assumed as a thick laminate with orthotropic orientation. Moreover, rotational inertia 

and transversal shearing, membrane and bending deformations are accounted for. First-order shear 

deformation theory is employed. The developed approach handles an unlimited number of symmet-

rical layers of transversal compressible or incompressible layers. The theories are developed in a 

wave approach context. The structural and acoustical problems are represented within the SEA con-

text and successfully compared to detailed FE predictions. 
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Plate B 
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